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Iteration of Runge-Kutta Methods with Block Triangular Jacobians

Wir betrachten Iterationsprozesse zur Losung der impliziten Relationen, die impliziten Runge-Kutta- Verfahren (RK-Ver-
fahren) beigeordnet sind, wenn sie auf steife Anfangswertprobleme (ARP) angewendet werden. Der konventionelle Ansatz
zur Losung der RK-Gleichungen verwendet die Newton-Iteration, wobei die volle Jacobi-Matriz der rechten Seite ausge-
nutzt wird. Fir ARP grofler Dimension ist dieser Ansatz wegen der hohen Kosten, die bei der LU-Zerlegung der Jacobi-
Matriz der RK-Gleichungen auftreten, nicht attraktiv. Es wurden verschiedene Vorschlige zur Reduzierung dieser hohen
Kosten gemacht. Am weitesten bekanntes Gegenmittel ist die Verwendung von Ahnlichkeitstransformationen, durch die
die RK-Jacobi-Matriz in eine block-diagonale Matriz transformiert wird, deren Blocke die ARP-Dimension haben. In
dieser Arbeit untersuchen wir einen alternativen Ansatz, der die RK-Jacobi-Matriz direkt durch eine block-diagonale
oder durch eine block-triangulare Matriz ersetzt, deren Blocke selbst block-triangulare Matrizen sind. So ein duflerst
,vereinfachtes’ Newton-Iterations- Verfahren gestattet ein Betrdchtliches an Parallelitit. Einen bedeutenden Beitrag stellt
hier allerdings die Antwort auf die Frage dar, ob der block-triangulare Ansatz konvergiert. Ziel der Arbeit ist es, Finsicht
in den Effekt auf die Konvergenz block-triangularer Jacobi-Matriz-Approzimationen zu gewinnen.

We shall consider iteration processes for solving the implicit relations associated with implicit Runge-Kutta (RK) meth-
ods applied to stiff initial value problems (IVPs). The conventional approach for solving the RK equations uses Newton
iteration employing the full righthand side Jacobian. For IVPs of large dimension, this approach is not attractive because
of the high costs involved in the LU-decomposition of the Jacobian of the RK equations. Several proposals have been
made to reduce these high costs. The most well-known remedy is the use of similarity transformations by which the RK
Jacobian is transformed to a block-diagonal matriz the blocks of which have the IVP dimension. In this paper we study
an alternative approach which directly replaces the RK Jacobian by a block-diagonal or block-triangular matriz the blocks
of which themselves are block-triangular matrices. Such a grossly ‘simplified’ Newton iteration process allows for a con-
stderable amount of parallelism. However, the important issue is whether this block-triangular approach does converge. It
is the aim of this paper to get insight into the effect on the convergence of block-triangular Jacobian approzimations.

MSC (1991): 65L06, 65L05, 34A50

1. Introduction

We shall consider iteration processes for solving the implicit relations associated with implicit Runge-Kutta (RK) meth-
ods applied to the stiff initial value problem (IVP)

YO =fy®), ylt) =y, vy feR" (1.1)
Let the (s-stage) RK method be given by
R(Y)=0, R(Y):=Y-h(A@D)F(Y)-(e®Dy,, yiu=(&DY, (1.2)

where h is the integration step, y, and y, . represent approximations to the exact solution vector y(t) at t =t, and
t=t,+1, A is the s-by-s RK matrix, ® denotes the Kronecker product, the s-dimensional vectors e and e;, respec-
tively, are the vector with unit entries and the 7th unit vector, and I is the d-by-d identity matrix (in the following,
the identity matrix will always be denoted by I and its dimension will be clear from the context in which it appears).
The s components Y; of Y represent intermediate approximations to the exact solution values and F(Y) contains the
derivative values (f(Y;)). The classical RK methods of this type, like the Radau IIA and Lobatto IIIA methods, are
highly accurate and highly stable, and therefore reliable methods for solving the IVP (1.1).

The conventional approach for solving the system R(Y) = 0 uses Newton iteration which requires the Jacobian
matrix I — A ® hJ of the RK equations (1.2). Here, J denotes the Jacobian 0f/dy of the righthand side function f. For
large d, this approach is not attractive because of the high costs involved in the LU-decomposition of the sd-by-sd RK
Jacobian I — A ® hJ. To be more precise, the LU costs are given by 2s3d®/3 + O(s?d?) flops. In the following, we shall
ignore the last term in this expression. Several proposals have been made to reduce these high costs. The most well-
known remedy is the use of similarity transformations by which I — A ® hJ is transformed to a block-diagonal matrix
I — D® hJ the blocks of which have dimension d (cf. Burcher [1]). For the classical implicit RK methods that we
want to use, the diagonal entries of D are complex, so that further modifications are needed involving complex arith-
metic (cf. HAirer and WANNER [5]). The resulting iteration method is highly efficient and forms the basis for the by
now famous RADAUS5 code given in [5]. Moreover, this iteration method has intrinsic parallelism, so that it is suitable
for implementation on a parallel system. In fact, by the similarity transformation approach, the sequential (or effec-
tive) LU costs associated with s-stage RK methods can be reduced to 84°/3.

An alternative approach directly replaces the RK Jacobian I — A® hJ by a block-diagonal or block-triangular
matrix I — B® hJ, where B is diagonal or triangular with real diagonal entries B;;. This approach was analysed in
[6] and [7]. The main costs involved in this method consist of the evaluation of the righthand side Jacobian J, the LU-
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decompositions of the s matrices I — hB;;J, ms forward/backward substitutions, and ms righthand side evaluations.
Here, m denotes the number of iterations. It turns out that, except for the forward/backward substitutions, these costs
reduce by a factor s when a parallel system with s processors is used. We shall be particularly interested in high-
dimensional problems, i.e. d 3> 1. Therefore, only O(md®) and O(d®) operations will be taken into account. Further-
more, we assume that the RK Jacobian needs an up-date at the beginning of each RK step (which is quite realistic
because of the relatively large steps allowed by implicit RK methods).

Denoting the computational complexity per step on p processors by E(p) flops, we have

E(p) mp~ted® + 3 [p7's] d® + 2msd®, (1.3)

where cd? represents the computational complexity for computing J and [z] denotes the smallest integer greater than
or equal to z. For large d, the expression (1.3) shows that on one processor, the costs of the block-triangular approach
are s/4 times the costs required by the similarity transformation approach. However, on s processors, this fraction
becomes 1/4, so that for large d the block-triangular method should become 4 times faster than RADAUS.

In this paper, we want to reduce the computational complexity of the block-triangular method by tuning the
iteration process to the problem at hand. For example, it often happens that the system (1.1) can be split into weakly
coupled subsystems. In such cases, it may be advantageous to adapt the RK Jacobian to these coupling properties.
Suppose that the righthand side Jacobian matrix J is approximated by a o-by-o block-triangular matrix J (o is
assumed to be greater than 1) where the blocks Jii are d;-by-dy, matrices with i, k = 1,..., 0, and let the RK Jacobian be
replaced by an s-by-s block-triangular matrix of which each diagonal block is itself a o-by-0 block-triangular matrix the
diagonal blocks of which are d;-by-d; matrices. The block-triangular structure of the simplified RK Jacobian implies that
the sd-dimensional linear system falls apart into so linear subsystems, s of which have dimensions di, ds, ..., dy, re-
spectively. The vector d := (dy, d, ..., d(,)T characterizes the partitioning into blocks of the matrix J and will there-
fore be called the partitioning vector. For large d and o, the block-triangular approach reduces the computational
work considerably, provided that the number of iterations, m, does not increase excessively. Such an increase of the
number of iterations can be avoided by decreasing the stepsize. Let h and h denote the stepsizes taken by the full
Jacobian and block-triangular versions, and let h be such that for 7 = m, the block-triangular version produces the
same accuracy as the full Jacobian version. Assuming that the block-triangular version up-dates its Jacobian and
corresponding LU-decomposition with the same frequency as the full Jacobian version, the sequential computational
complexity E(p) of the block-triangular version over a step h is given by

E(p) ~p~led® + 2 [p~'os] & + 2hh " ms||d])3, (1.4)

where ||d||, denotes the Euclidean norm of d, &d? represents the computational complexity for computing J, and dis
the maximal value of the dimensions d;. Furthermore, assuming that sufficiently many processors are available, the
speed-up factor for the block-triangular approach on p = os processors is given by

5. E(os) 3¢+ 20s(d + 3sm)
" E(os) 3¢+ 20sd~2(d® + 3smhh-1|d]3)

(1.5)

If the righthand side Jacobian J is expensive, i.e., c and ¢ are large, then we have speed-up by a factor S ~ c¢t. Conse-
quently, for expensive righthand side Jacobians, it is recommendable to choose .J as sparse as possible (e.g. block-diagonal).
In the case of cheap righthand side Jacobians (¢ and & can be ignored), it follows from (1.5) that

d? 3sm+d

S = - - — 1.6
ldll3 3smhh=" + dd]l,” o
showing that S = S(m) is a monotonically decreasing function of m satisfying the inequality
& > 3s+d
e (1.7)
hh=td[ly dll; 3shh=! + d*||d]l,

We remark that these expressions for S are related to the theoretical speed-up factor. Hence, an actual
implementation on a parallel architecture will show speed-up factors that are bounded above by the theoretical ones,
due to (machine dependent) communication costs and synchronization overhead. The important issue is whether the
block-triangular iteration method does converge as m — co. It is the aim of this paper to get insight into the effect on
the convergence of block-triangular Jacobian approximations.

2. Iteration of RK methods

Consider the following Newton-type iteration scheme for approximating y, . :

(I-B@hJ)(YV - YU-D)= —R(YU-D) 4+ ol (YD, YU-D) | j=1,... m, }

2.1
Vas1= (€] ®I) Y™, 21
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where I is the sd-by-sd identity matrix, B is diagonal or (lower) triangular with positive diagonal entries, J is an
approximation to the true Jacobian J at y,,, and where I is an appropriately chosen function based on the structure of
J. Tt will be assumed that I’ (U, U) vanishes for any U. Hence if (2.1) converges, then it converges to the solution of

R(Y) = 0. We remark that the case J = J and I'(YY, YU~1) = 0 has been analysed in [6] for B diagonal and in [7]
for B triangular.

Let us define the function I" by
ry®, Y1) = (Le YD) +(Co 1) GYV, Y9) - (L + C) & ) B(YY~Y), (2.2

where C is diagonal, L is strictly 1ower triangular, and where for any U the function G satisfies the relation
G(U, U) = F(U). In fact, G(YY, YU~Y) is an approximation to F(Y) using the most recent iteration values avail-
able.

To motivate the introduction of the function I', we will discuss in some detail the various terms occurring in the
righthand side of (2.2). In the first term we encounter the matrix L, acting on the current iterate Y. As a conse-
quence, the s systems of dimension d cannot be solved in parallel as it was the case in [6], even if B is diagonal. Hence,
owing to the strictly lower triangular form of L, these systems are solved sequentlally In this way we introduced a
‘Gauss-Seidel type approach, since the stage component vectors Y .. YJ , at the new iteration level are used in
solving for Y 0 - Next, we consider the last term in (2.2). This telm does not comphcate the algorithm, since here only
the known, previous iterate YV~ is involved. Finally, we comment on the role of the function G, occurring in the
second term of (2.2). The major aim for introducing this function is to be able to use the most recent information
available within the solution of each of the s linear systems. As already observed in the Introduction, if the matrix J
is a o-by-0 block-triangular approximation ( ~Lk) to J where the blocks Jj;, are d;-by-dy matrices, then each of the
s linear systems in (2.1) falls apart into a sequence of ¢ linear subsystems, respectively of d1mens10ns dy, day ..., dg.
The block-triangular structure of J enables us to ‘up-date’ the components of G(Y(f) YU-Y) during the computation
of each of the stage value approximations Y , k=1, ..., s. In the next subsection, an explicit formula for G is given
in case of a linear problem. In conclusion, we might say that two complementary forms of Gauss-Seidel iteration have
been introduced: one by means of the matrix L (to use new information from one stage to the next), and the other by
the function G (acting within each stage) by exploiting the block-triangular structure of J.

2.1. The error equation

In this section, we discuss the convergence for the linear case y’' = Jy. Let the righthand side Jacobian J be parti-
tioned according to J = (Jy) where the blocks Jiy are di-by-dp matrices, and let J be split according to
J=Jy,+ Jp + Ju, where Ji,, Jp, and Jy are (with respect to the block partitioning Jj) strictly lower triangular,
diagonal and strictly upper triangular block matrices. For this model equation, G(YU), YY) can be expressed in the
form

GYD, YUy = (T i) YV + (I o (Jy + Ju) YU U

so Lhat

WYY, YYDy = (Lo hd +C e hd) YYD + (C@h(Jp + Jy) = (L+C)@hJ) YU~ (2.3)
The recursion for Y takes the form
(I -BohJ)(YV -YY Vy=(ew D)y, - YU+ (Loh)+ (C®hJ)) YV
+((C@h(Jp+Ju))+ (A= L-C)®@hJ)) YU, (2.4)
For the exact corrector solution we have
(I-Behl)(Y-Y)=(ex)y, - Y+ (Leh))+(C®hJL)Y
+((C@h(Jy+Ju)+(A-L-C)®hJ))Y. (2.5)
From (2.4) and (2.5) it follows that the error recursion is given by
YU Y = MYV D - Y), ) } 26)
M=h(I -hW) (A -W), W:=BaJ+LoJ+C&J,.

The error amplification matrix M is completely determined by the RK matrix A and the lower block-triangular matrix
W. In this paper, we shall restrict our analysis to the two special cases

B=(C=1D, J =y, (2.7a)
B=D, =0, J=Jy+Jdi, (2.7b)
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where D denotes a diagonal matrix with nonnegative diagonal entries. The methods generated by (2.7a) and (2.7b)
both lead to the same matrix W:

W=T®J-D®Jy, T:=L+D. (2.8)

Hence, they possess identical error recursions, but will produce different solutions when applied to nonlinear problems.

A necessary and sufficient condition for convergence of the error recursion (2.6) requires the spectral radius o(M)
to be less than 1. In the case J = J, L = C = O, analysed in [6], this spectral radius condition leads to a condition in
terms of the eigenvalues of hJ. For the more general family of methods generated by (2.7), this is not possible and the
condition o(M) < 1 can only be verified by a direct numerical computation. However, if all diagonal entries of h W are
sufficiently large, then the condition (M) < 1 can be transformed into a spectrum condition for J™!'Jy. In the case
where not all diagonal entries are large, it is possible to derive bounds for the amplification factor x4 occurring in the
relation

[Ma®v)| =ulla®v|, (2.9)
where v is in the eigenspace of J and a is in the eigenspace of the matrix
Z(z)=2(I-2zT)"" (A=T),  z:=hA, (2.10)

A denoting the eigenvalue of J corresponding to v. If a ® v happens to be an eigenvector of M, then the amplification
factor u = u(h, z) equals the corresponding eigenvalue of M, so that convergence requires that all 4 are less than 1.
Hence, u(h, z) < 1 is a necessary condition for convergence.

The derivation of amplification factor bounds and the convergence condition for the large-diagonal-entries case
will be the subjects of the following two sections.

2.2. Derivation of amplification factor bounds

The following theorem holds.

Theorem 2.1: Let W be of the form (2.8), let Z(z) be defined by (2.10), and let v and a be eigenvectors of J,
and Z(z) with eigenvalues A and {(z), respectively. If

1 -1
h< ——, = ||D|| max ||[(I -T ® hJ , 2.11a
T 7= 1l ma 7 (211a)

then the amplification factor u defined in (2.9) satisfies

2)| + yh||J
iz
and the corresponding convergence region is given by
Spectrum hJ € € := {z: o(Z(2)) < 1 — 2yh||Jul|}. (2.11¢)
Proof: From (2.8) it follows that M can be represented in the form
M=(I+Q)" (@Q@+V),
Q=I-T®hJ)"" (D&®hy), Vi=(I-T®hJ)" (A-T) @hJ). } 212)

By means of the conditions of the theorem, it is easily verified that
Va®v)=(hA(l —hT) ' (A-T)®I)(a®v) = &(z) (a® V)
so that
[V(a@ V)| < [E(z)| [la® v]].
Furthermore, assuming that ||@Q|| < 1, we have

1

-1
II+Q)"| < I—_‘m

Hence,

IMaev)| = I+Q)™@Q+V)(@sv)| < @};HLC%% lasvl.

Since ||Q]| < yh||Juy|l, where y is defined in (2.11a), we obtain the bound (2.11b) and the convergence region
(2.11c). W
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The bound (2.11b) on u is sharp for Jy = O, i.e. u = |{(z)|, but will be rather conservative as | Jy|| increases. If
the spectrum of J is assumed to cover the whole left halfplane, then the conditions (2.11) lead to the stepsize condition

h <[~ max o(Z(2))/2y|Ju]- (2.13a)

Similarly, if the spectrum of .J is known to be negative, then we obtain
h < [1 —max o(Z(2))]/27Jull - (2.13Db)
Given the IVP, the two crucial quantities determining the stepsize conditions (2.13) are the values of y and

max 0(Z(2)). In [7] matrices T have been constructed such that o(Z(z)) is small in the whole left halfplane. In order to
get some idea of the magnitude of the coefficient y, we consider the case where J is a normal matrix, so that

- _ -1
y = || Dl X (I —==T)"".

The following two examples compute the corresponding stepsize conditions (2.13).

Example 2.1: For the two-point Radau ITA corrector, the Butcher matrix A and the matrix T as constructed
in [7] are given by

_(5/12 -1/12 _(5/12 0 N 92
A"<3/4 1/4)’ T’<3/4 2/5)’ o2& = s B0 |

From this we find y ~ 0.71, Jnax 0(Z(2)) =~ 0.18, and max 0(Z(z)) = 0.09. Hence, the convergence conditions (2.13)
become h < 0.58||Jy||”" and h < 0.64||Jy|| ", respectively. W

Example 2.2: Similarly, the four-point Radau IIA corrector is defined by the Butcher matrix

.11299947932316 —.040309 220723 52 .02580237742034 —~.009904 676 507 3

.234 38399574740 .20689257393536 —.047857 12804854 .016 047 422 806 52
.216 68178462325 406123 263 867 37 189036 51817006 —.024 182 104 899 83
220462211176 77 388193468843 17 .328 844 319 980 06 .062 500 000 00000

for which [7] derived the matrix

1130 0 0 0
2344 2905 0 0
2167 4834 .3083 0
2205 4668 4414 1176

A=

T =

Numerically, we found y =~ 0.96, [nax. 0(Z(z)) = 0.51, and max 0(Z(z)) =~ 0.16, so that the conditions (2.13) become
h < 0.25|Jyl”" and h < 0.43||Jy| ", respectively.

2.3. Large diagonal entries in the Jacobian

It sometimes happens that hW has large diagonal entries (i.e. RW — I &= hWW), or equivalently,

Iriin‘Jkkl > h“l(rnill D,-,-)_l , i1=1,...,8, k=1,...,4d, (2.14 a)
¥ i

where J is assumed to be nonsingular. Qutside the transient phase, where usually relatively large stepsizes h are taken,
condition (2.14a) is often satisfied. From (2.14a) it then follows that the error amplification matrix M can be approxi-
mated by

MrIl-WlA)=I-(T®I-DoJ 'Jy) ' (A®I).

The eigenvalues of M are given by those of the matrix M(z) =1 — (T ® I — 2D ® I)™' (A® I), where z runs through
the spectrum of J~!.Jy. Hence, we have convergence if

Spectrum of J ' Jy € € := {z: o(M(2)) < 1}. (2.14b)

Example 2.3: We derive the region of convergence for the two-point and four-point Radau IIA correctors of
the Examples 2.1 and 2.2. The characteristic equation for the eigenvalues ji(z) of the matrix M(z) takes the form
det (A — T + 2D + j(z) (T — zD)) = 0. Inspection of the region where fi(z) is bounded by 1 reveals that for both correc-
tors the region of convergence for the eigenvalues of J~1Jy contains a disk of radius » which is centered at the origin
and an infinite wedge in the left halfplane with half angle a. For the two-point and four-point Radau ITA correctors,
we obtain {r = 0.27, @ = 54°} and {r = 0.11, a = 18°}, respectively. B
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Remark 2.1: It often happens that the system of ODEs (1.1) contains nonstiff equations (an equation
Yi(t) = fily(t)) is called nonstiff if all derivative values 8fi(y(t))/dy;, =1, ..., d, are of moderate size, say bounded
by 1). Such nonstiff equations do not need implicit treatment. Therefore, in applying the convergence conditions (2.13)
and (2.14), we may delete all rows and all columns in J and Jy which correspond to nonstiff equations.

2.4. Permutation, transformation and scaling of the ODE system

It is often possible that the ordering of the equations in the system of ODEs (1.1) can be changed in such a way
that entries of large magnitude in J move to the lower left corner of the matrix. This may help to reduce the norm of
the matrix Jy in condition (2.13) or to relax the condition (2.14b), so that an attractive partitioning vector d can be
obtained (i.e., d has small entries d;). Let us write z(t) = Py(t) where P is a permutation matrix, which is such that
the Jacobian PJPT of the permuted system z'(t) = Pf(P"z(t)) has a dominant, lower block-triangular structure. We
shall define a reordering by the permutation vector p = (p1, pa, - .-, pd)T, where p; denotes the index of the y-compo-
nent in the original system (p = (1, ..., d)-r implies no reordering). Evidently, the permutation matrix P associated
with p is defined by P:= (e, €5, ..., e},‘,)T and the entries of PJPT are given by J TJ = Jp,p,» where J,. denote the
entries of J.

It may happen that the solution vector y possesses components of large and small magnitude. In such cases, it is
not clear when the permuted Jacobian has a ‘dominant, lower block-triangular’ structure, and it may be useful to scale
the ODE system by writing y(t) = Dy(t), where D = diag (1/y(ty)). Then, §'(t) = Df(D~'y(t)) has the scaled Jaco-
bian DJD™!, and rather than choosing P such that PJPT is dominant, lower block-triangular, P is chosen such that
PDJD !PT is dominant, lower block-triangular.

It should be remarked that it is possible to achieve a complete lower block-triangular structure by the real-
Schur-decomposition of J. Writing z(t) = Qy(t) and z'(t) = Qf(Q"z(t)), the (orthogonal) matrix Q can be chosen such
that QJQT has a lower block-triangular structure with blocks of at most dimension 2. However, the computation of Q
(by the QR-algorithm) is rather expensive and requires 15d° (Moler) flops (cf. [4, p. 235]).

Finally, we remark that in actual computation, the reordering, the real-Schur-decomposition, and the scaling
approach are most effective if the righthand side Jacobian is slowly changing over a large number of steps and if the
transformed righthand sides Pf(P'z(t)) and Qf(QTz(t)) can be provided in ‘written out’ form (otherwise the many
additional matrix vector multiplications will reduce the efficiency considerably).

3. Numerical experiments

The crucial aspect of the block-triangular Jacobian approximations discussed in this paper is the convergence beha-
viour for o > 1. In this section, we illustrate the performance and speed-up factors for a few test problems. Given the
partitioning vector d and the iterated RK method {(2.1), (2.2)}, we shall apply the following three modes (see also

(2.7)):

Full Jacobian: J=J, B=D, C=0, (3.1)
Triangular Jacobian: J=Jp+Ju, B=D, C=0, (3.2a)
Diagonal Jacobian: J=Jy, B=C=D. (3.2b)

We used the four-stage Radau IIA corrector and we define the matrices A and T = L + D as in Example 2.2. We
shall refer to the methods generated by (3.1), (3.2a), and (3.2b) as the Full J, the Trian J, and the Diag J version (for
a discussion of the Full J version we refer to [7]).

3.1. Convergence conditions

The Trian J and Diag J versions both lead to W =T ® J — D ® Jy as defined in (2.8), so that the matrix W is of the

form as presupposed in the conditions (2.13) and (2.14). For the four-stage Radau IIA corrector, we have the stepsize
condition

h < 0.25 || Ju]| " (3.3)

(see Example 2.2), so that there is no severe stepsize restriction, provided that the partitioning vector d is such that Jy
is nonstiff. Alternatively, we may check whether the conditions (2.14) are satisfied. For the four-stage Radau IIA
corrector, these conditions read:

mljn | Jir| > 8.85 h™1, k=1,...,d, spectrum J 1Jy € €, (3.4)

where C is specified in Example 2.3.
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2. Test problems

In all experiments, constant stepsizes have been used. If needed, we adapted the initial condition such that the integra-
tion starts outside the transient phase. For a given number of iterations, m, the tables of results present the minimal
number of correct digits cd of the components of y at the end point ¢ = te,q of the integration interval (i.e., the
absolute errors are written as 107°?). Furthermore, we compute the corresponding speed-up factors. Since in all exam-
ples, the costs for computing the Jacobian are negligible, we shall use formula (1.6).

3.2.1. Problem of Davison

In EnrigHT [3], the following 80-dimensional system of ODEs with a strongly dominant Jacobian matrix is advocated
as a test problem for stiff solvers:
4 4. sin ((2k + 1) m2)
A — — d = 80, =0, tend = 5. 3.
y'(t) = Ay(t) +— Z:IO Y] , 80, y(0) =0, tena =5 (3.5)

Here, the entries of A = (a;;) are 0.01, except for the diagonal entries, the lower and upper off-diagonal entries that are
respectively given by a; = —(1.5)* " ‘, @ i-1=ai;+1 = 0.1. This problem originates from Davison [2]. It is an 1deal
example for applying a fully diagonal approximation to the Jacobian. Keeping the original ordering p = (1, 80)
and using the maximum norm we have ||Jy|| = 0.88, so that condition (3.3) becomes h < 0.32.

Since (3.5) is linear, the Diag J and Trian J modes are identical. We applied the method with {o =1, d = (80)},
i.e. the Full J version, and with {oc =80, d = (1, . ., 1)"}, where d is the partitioning vector. Table 3.1 presents the
cd-values obtained. Not surprisingly, the accuracies are the same for hh™! =1, so that (1.7) shows that the speed-up
factor is at least S = 80. Note that convergence is also obtained for h > 0.32, indicating that the convergence condition
(3.3) is rather conservative.

Table 3.1. Davison problem (3.5)

Version h d’ m=1 m = m = m=4 ... m=10 m = oo
Full J 0.5 (80) 1.6 2.2 2.1 2.1 .20 2.0
Diag J 0.5 (1,...,1) 1.6 2.2 2.1 2.1 .20

Full J 0.2 (80) 1.9 3.3 4.1 4.2 . 4.2 4.2
Diag J 0.2 (1,..., 1) 1.9 3.3 4.1 4.2 L. 4.2

Full J 0.1 (80) 2.2 4.0 5.7 7.0 L. T2 7.2
Diag J 0.1 (1,...,1) 2.2 4.0 5.7 7.0 L. T2

3.2.2. HIRES problem of Schafer

A second example is provided by the HIRES problem given in [5, p. 157] which originates from ScrAFER [8] for explain-
ing the ‘High Irradiance Responses’ of photomorphogenesis:

Y, = —1.71y; + 0.43y» + 8.32y3 + 0.0007, y1(5) = 0.316 516 757 046 x 107,

yh = +1.71y; — 8.75y2, ya(5) = 0.648 154 953 106 x 1072,

Yy = —10.03ys + 0.43y4 + 0.035ys , y3(5) = 0.458 345106 475 x 1072,

Y, = +8.32ys + 1.71y3 — 1.12y,, y4(5) = 0.897432327352 x 107}, (3.6)
¥ = —1.745ys + 0.43y7 + 0.43ys, ys(5) = 0.162451453 753, :
Yy = —280ysys + 0.69ys + 1.71ys — 0.43ys + 0.69y7,  v6(5) = 0.685043 896 144,

v, = +280ysys — 1.81y7, y7(5) = 0.564 670034 192 x 1072,

Yg = —280ysys + 1.81y7, ys(5) = 0.532996 580 805 x 107,

with tena = 305. Only the last three equations of the system (3.6) are relatively stiff, so that we can keep the original
ordering. It is easily seen that setting 0 =2 and d = (4, 4) yields a matrix Jy that contains only one non-zero entry,
ie. (Ju)ss = 0.035. Hence, in view of condition (3.3), we may expect amplification factors less than 1 without severe
restrictions on the stepsize h.

The Diag J and Trian J modes produce almost the same results. Therefore, we listed results only for the Diag J
mode. The figures in Table 3.2 show that from the second iteration on, the Full J and Diag J version yield comparable
accuracies for hh~! = 1. The speed-up factor is given by S ~ 2 +m™".
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Table 3.2. HIRES problemn (3.6) of Schéfer

Version h ar m=1 m=2 m=3 m=4 m =10 m =00
Full J 15 (8) 3.1 40 3.9 41 ... 56 7.9
Diag J 15 (4, 4) 2.2 3.8 4.0 4.1 ... 56
Full J 7.5 (8) 3.3 44 47 5.3 .70 9.0
Diag J 7.5 (4, 4) 2.5 45 48 5.5 .70
323. NUCREAC problem of Strehmel-Weiner
In StrREAMEL and WENER [9, p. 310], we find a simplified model of a nuclear reactor:
3
th =~ ¥ (500y2 — 374280) y1 + 5 3 Bivi,
i=3
1 .
th =~ Tg= (3304 — 136000y, — 9900) (37)
¥ =—=v(vi—y), 3<Li<8,
where
1.745794 025602 1
749.478 029 221 95 30.2 3

1.579 316 355556 2 82.8 1.13

1.3218653740997 284.4 0.301
yO5) =1 1loa1863341400 | P=BI={1g41 | Y=0d=]on

1.040256 9019400 157.7 0.0305

1.0112850912753 23.8 0.0124

1.004 608 805 868 6

Only the first two equations are stiff, so that in the Diag J and Trian J modes we may set d = (2,2, 2,2)T with o = 4.
Since the stiff subsystem is iterated with a full Jacobian, convergence is expected without stepsize restriction (see Re-
mark 2.1). The results at fe,q = 15 listed in Table 3.3 show that the Full J and Diag J versions produce comparable
accuracies for m > 1 and kA~ =1 (again, the Trian J and Diag J modes yield almost identical results). The speed-up
factor (1.6) is S~ 4+ 2.5m~!. Here, and in the following examples, N denotes the number of time steps, i.e.,
h= (tend - 7:O)/‘N-

Table 3.3. NUCREAC problem (3.7) of Strehmel-Weiner

Version N dT m=1 m=2 m=3 m=4 m =10 m= 00
Full J 2 (8) 1.5 2.5 3.3 3.5 ... 35 3.5
Diag J 2 (2,2,2,2) 1.0 2.0 2.9 3.5 ... 35

Full J 5 (8) 1.9 3.2 4.2 5.2 ... 81 8.1
Diag J 5 (2,2,2,2) 1.6 2.9 4.1 5.2 ... 81

Full J 10 (8) 2.2 3.8 5.0 6.2 10.1 10.1
Diag J 10 (2,2,2,2) 2.0 3.6 5.0 6.2 10.1

3.24. ATMOS20 problem of Verwer

The ATMOS20 problem is a stiff, nonlinear system of 20 ODEs originating from an air pollution model (see VERWER
[10], we note that this paper contains a misprint: the third reaction rate should read 0.123;y instead of 0.120,p). We
solved the corrected system in the integration interval [5,60]. Table 3.4 lists results for the following four cases:

I. o=1, d=(20), p=(1,...,20)7;
I. o=3, d=(7,58)", p=(1,...,20)7;
: o=8, d=(3,3,33,223 1",
p = (16,17, 18, 5,6, 8,9, 10, 11, 12, 13, 14, 15, 7, 19, 20, 3, 1, 4, 2)7;
IV: 0=20, d=(1,....,10)", p=(,...,20)".

The Diag J and Trian J modes produced almost the same accuracies. For hh™! =2 and hh~! = 4, the cases I and III
lead to a satisfactory speed-up factor S ar 1.45+2.2m™! and § ~ 1.85 + 3.1 m™!, respectively. The extremely cheap,
but over-optimistic case IV leads to a rather poor convergence behaviour.
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Table 3.4. ATMOS20 problem of Verwer [10]

Version N Case m=1 m=2 m=3 m=4 ... m=10 m = 0o
Full J 5 I 3.4 4.9 7.0 §.8 ... 87 11.0
Trian J 5 II 3.4 5.1 5.2 6.1 . 82
I 2.5 3.3 4.0 4.7 R
v 2.2 2.8 3.4 4.1 L4l
Full J 10 I 3.7 5.5 7.6 8.3 ... 115 12.3
Trian J 10 II 3.8 5.7 6.0 7.2 ... 103
jui 2.8 3.8 4.6 5.4 ... 95
JAY 2.4 3.2 4.1 4.7 4.5
Full J 20 I 4.0 6.2 8.2 10.0 .o 121 12.1
Trian J 20 I 4.1 6.4 6.7 7.7 ... 119
I 3.0 4.3 5.3 6.1 ... 110
v 2.7 3.7 4.7 5.1 ... 4.9
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